Deep Learning With Applications
Room: Room 306, Bldg: Becton Building , FDU Metropolitan Campus, 960 River Road, Teaneck, New Jersey, United States, 07666 River Road, TeaneckSeptember 21 through November 2, 2024. Six Saturdays 1:30-4:30pm (9/21, 9/28, 10/5, 10/19, 10/26, 11/2). The IEEE North Jersey Section Communications Society Chapter is offering a course entitled "DEEP LEARNING WITH APPLICATIONS". Deep learning is a transformative field within artificial intelligence and machine learning that has revolutionized our ability to solve complex problems in various domains, including computer vision, natural language processing, and reinforcement learning. This hands-on course on deep learning is designed to provide students with an understanding how these amazing successes are made possible by drawing inspiration from the way that brains, both human and otherwise, operate. Students will gain a comprehensive foundation in the principles, techniques, and applications of deep neural networks. Learning how to solve real data-set based applications will teach students how to really apply deep learning with Python programming software. Participants will be asked to design and train deep neural networks to perform tasks such as image classification using commonly available data sets. However, participants are encouraged to apply the techniques from this course to other data sets according to their interests. Discuss with the instructor in order to propose your own project. More importantly, this will set the foundations for understanding and developing Generative AI applications. The IEEE North Jersey Section's Communications Society Chapter can arrange for providing IEEE CEUs - Continuing Education Units (for a $5 charge) upon completion of the course. Course prices: $75 for Undergrad/Grad/Life/ComSoc members, $100 for IEEE members, $150 for non-IEEE members Co-sponsored by: Education Committee Speaker(s): Thomas Long, Agenda: 1. Introduction to Neural Networks: Explore the fundamental concepts of artificial neural networks, backpropagation, activation functions, and gradient descent, laying the groundwork for deep learning understanding. 2. Introduction to PyTorch: Learn how to implement and train neural networks using PyTorch one of the most popular deep learning frameworks. Understand tensors. 3. Computer Vision Applications: Apply deep learning to computer vision problems, including image classification and object detection using Convolutional Neural Networks (CNNs) 4. Training and Optimizing Deep Neural Networks: Study techniques for training deep neural networks effectively, including optimization algorithms, weight initialization, regularization, and dropout. 5. Sequential Data Analysis: Explore how deep learning is used to analyze sequential data using Recurrent Neural Networks (RNNs). In particular, explore how neural networks are used in Natural Language Processing (NLP) tasks such as sentiment analysis and machine translation. 6. Generative AI: Overview of generative ai techniques that leverage the patterns present in a dataset to generate new content. Applications of generative ai include large language models such as ChatGPT and image generation models such as Midjourney and Stable Diffusion. This course assumes a basic understanding of machine learning concepts and programming skills in Python. Familiarity with linear algebra and calculus will be beneficial, but not mandatory. Statistical software (Python, Scikit-learn) and Deep Learning Frameworks (Pytorch, TensorFlow) will be used throughout the course for the exploration of different learning algorithms and for the creation of appropriate graphics for analysis. Learning objectives: Subjects covered include these and other deep learning related materials: artificial neural networks, training deep neural networks, RNN, CNN, image recognition, natural language processing, GANs, data processing techniques, and NN architectures. The course is intended to be subdivided into 3-hour sessions. Each lecture is further subdivided into lecture, guided and independent project based exercises to build experience with hands-on techniques. This course will be held at FDU - Teaneck, NJ campus. Checks should NOT be mailed to this address. Can bring checks in person or use online payments at registration. Email the organizer for any questions about course, registration, or other issues. Technical Requirements: Students will need access to the Python programming language. In addition to a standard Python installation, most programming exercises will use the package Scikit-learn. Basic programming skills and some familiarity with the Python language are assummed. Students are expected to be able to bring a laptop onto which most of these libraries can be pre-installed using python's pip install. Most of the coding in this course will use the Python programming language. Coding examples and labs will be distributed in the form of Juypter notebooks. In addition to standard Python, most programming exercises will use either the PyTorch or TensorFlow libraries. Books and other resources will be referenced. Room: Room 306, Bldg: Becton Building , FDU Metropolitan Campus, 960 River Road, Teaneck, New Jersey, United States, 07666
AI Skill Development for IT Professionals and Consultants
Virtual: https://events.vtools.ieee.org/m/440424This meeting will cover the growing importance of AI skills for IT professionals and consultants. The session will focus on key AI technologies, skillsets in demand, and practical steps to develop AI expertise. Attendees will gain insights on how to enhance their careers and provide AI-driven solutions to clients. Speaker(s): Dr. Raj Vayyavur, Agenda: - Welcome and Introductions Overview of the meeting's objectives and its importance in today's AI-driven world. - The Evolving AI Landscape Overview of key AI technologies (e.g., Machine Learning, Natural Language Processing, Computer Vision) and their business applications. - Core AI Skills in Demand Highlight the critical AI skills in demand, such as data analysis, AI model development, and AI ethics, and how they apply to consulting. - AI Tools and Platforms for Consultants Introduction to popular AI tools and platforms like TensorFlow, Microsoft Azure AI, and OpenAI, with practical use cases for IT professionals. - Building AI Skills: Learning Paths and Certifications Discussion on AI certification programs, online courses, and learning paths to develop AI expertise (e.g., Coursera, edX, Google AI). - Q&A and Networking Open floor for questions, followed by a networking session to discuss opportunities in AI. - Closing Remarks Summary of key takeaways and next steps for attendees to start or enhance their AI skill development journey. Virtual: https://events.vtools.ieee.org/m/440424
IEEE PCJS Distinguished Lecture by Sudipto Chakraborty
Room: B205, Bldg: Engineering Quad, Olden Street, Princeton, New Jersey, United States, 08544 PrincetonThis talk will cover practical challenges for cryogenic CMOS designs for next generation quantum computing. Starting from system level, it will detail the design considerations for a non-multiplexed, semi-autonomous, transmon qubit state controller (QSC) implemented in 14nm CMOS FinFET technology. The QSC includes an augmented general-purpose digital processor that supports waveform generation and phase rotation operations combined with a low power current-mode single sideband upconversion I/Q mixer-based RF arbitrary waveform generator (AWG). Implemented in 14nm CMOS FinFET technology, the QSC generates control signals in its target 4.5GHz to 5.5 GHz frequency range, achieving an SFDR > 50dB for a signal bandwidth of 500MHz. With the controller operating in the 4K stage of a cryostat and connected to a transmon qubit in the cryostat’s millikelvin stage, measured transmon T1 and T2 coherence times were 75.5μS and 73 μS, respectively, in each case comparable to results achieved using conventional room temperature controls. In further tests with transmons, a qubit-limited error rate of 7.76x10-4 per Clifford gate is achieved, again comparable to results achieved using room temperature controls. The QSC’s maximum RF output power is -18 dBm, and power dissipation per qubit under active control is 23mW Speaker(s): Sudipto Chakraborty, Agenda: Refreshments Distinguished Lecture Room: B205, Bldg: Engineering Quad, Olden Street, Princeton, New Jersey, United States, 08544